Uczenie maszynowe rozwiąże problemy klimatyczne

uczenie maszynowe © pixabay-geralt

Udostępnij:

Jednym z najgorętszych trendów na rynku technologicznym są rozwiązania wykorzystujące algorytmy uczenia maszynowego do usprawnienia działania systemów sztucznej inteligencji. Testuje się je na grach komputerowych, aby szkolić ich umiejętności kompetytywne. Wykorzystywane są w branży telewizyjnej do poprawiania jakości wyświetlanego obrazu, do usprawniania procesów przesyłu danych, a także do tworzenia nowych, innowacyjnych narzędzi do analizy danych. 

Szeroko zakrojone badania nad wykorzystaniem algorytmów uczenia maszynowego w procesie doskonalenia sztucznej inteligencji prowadzi firma OpenAI, która testuje stronnicze algorytmy danych w oparciu o popularne gry wieloosobowe. Firma wyszkoliła od zera m.in. boty do gry Dota 2, aby te były w stanie podejmować niezależne decyzje, bazując wyłącznie na danych wizualnych wyświetlanych podczas rozgrywki. W wyniku wielomiesięcznych eksperymentów udało się wytrenować drużynę botów OpenAI Five i przetestować ją w starciu z zawodowymi graczami e-sportowymi. Zespół mistrzów uległ sztucznej inteligencji.


Rozwój sztucznej inteligencji nie przypomina tradycyjnego programowania

– W ciągu następnej dekady oczekujemy pojawienia się silnej sztucznej inteligencji, która pozwoli na to, żeby maszyna pozyskiwała informacje bez ograniczeń w celu rozwinięcia inteligencji obejmującej wiele dziedzin. Jeżeli zostanie wprowadzona, maszyny będą dysponowały dużo większym zasobem informacji: kiedy jeden samochód autonomiczny wyciągnie wniosek z błędu, pozostałe samochody w sieci nauczą się tego samego. A kiedy człowiek spowoduje wypadek, ktoś inny nie wyciągnie z niego wniosków. Maszyny będą miały dużo więcej możliwości nauki, będą mogły czerpać z większej bazy danych zawierającej wiedzę – Mo Gawdat, twierdzi założyciel One Billion Happy.

Duże nadzieje w rozwoju systemów sztucznej inteligencji pokłada także firma Google, która szkoli swój algorytm AlphaStar na grze StarCraft II. Korporacji udało się dopracować ją do tego stopnia, że jest w stanie wygrać 99,8% punktowanych rozgrywek. AlphaStar jest pierwszą sztuczną inteligencją, która osiągnęła poziom arcymistrzowski w StarCraft II. Tymczasem podczas gry nie wykorzystuje w pełni swojego potencjału – aby wyrównać szanse, twórcy ograniczyli szybkość jej interakcji z interfejsem. AlphaStar może wydawać do 22 komend w ciągu pięciu sekund, co upodabnia ją do zawodowych graczy. Gdyby znieść to ograniczenie, byłaby jeszcze skuteczniejsza.


TOP w kategorii




Sztuczna inteligencja będzie uczyć się na błędach

Google wykorzystuje SI we wszystkich swoich produktach. Algorytmy uczenia maszynowego znajdziemy w wyszukiwarce, filtrze antyspamowym Gmaila czy reklamach AdSense, które dostosowują wyświetlane treści do użytkownika i uczą się jego preferencji. Firma powołała do życia także projekt TensorFlow, otwarty framework sztucznej inteligencji, który pozwala zewnętrznym firmom wykorzystywać technologię uczenia maszynowego do analizowania dużych zbiorów informacji. – Zasoby Google i całego internetu staną się źródłem wiedzy niezbędnej do rozwiązania poważnych problemów przez maszyny. Być może odpowiedź na globalne ocieplenie i zmiany klimatyczne leży w czymś więcej niż tylko zmianie naszych nawyków, stanowiącej jeden z fundamentalnych rozwiązań tego problemu. Może rozwiązania należy szukać po trochu w chemii, w połączeniu ze zrozumieniem pewnych zagadnień z zakresu fizyki kwantowej czy filozofii. Jedna osoba nie jest w stanie tego połączyć, a maszyna wykorzystująca sztuczną inteligencję ma taką umiejętność – twierdzi Mo Gawdat.

Według analityków z firmy Verified Market Research wartość globalnego rynku uczenia maszynowego w 2018 r. wyniosła 3,02 mld dol. Przewiduje się, że do 2026 r. wzrośnie do 26,64 mld dol. przy średniorocznym tempie wzrostu na poziomie 41,5%.

Źródło: Newseria

Udostępnij:

Drukuj





etA



Chcesz otrzymać nasze czasopismo?
Zamów prenumeratę
Zobacz również