Tradycyjnie uzyskanie dokładnych danych analitycznych dotyczących pracy silnika było związane z kosztownym procesem wyłączania urządzeń w celu montażu czujników mechanicznych. Prawidłowy montaż czujników mechanicznych był nie tylko bardzo trudny – same czujniki były często nieopłacalne i wprowadzały zmienne, które mogły pogorszyć ogólną wydajność systemu.

Niska jakość zasilania ma bezpośredni wpływ na sprawność silnika

Anomalie zasilania, np. stany przejściowe, harmoniczne lub niezrównoważenie faz mogą powodować znaczne uszkodzenia w silnikach elektrycznych. Anomalie zasilania, np. stany przejściowe i harmoniczne, mogą być szkodliwe dla pracy silnika. Stany przejściowe mogą powodować poważne uszkodzenia w izolacji silnika lub wyzwalać zabezpieczenia przeciwprzepięciowe w obwodach, co prowadzi do znacznych strat finansowych. Harmoniczne, które wytwarzają zakłócenia w napięciu i prądzie, mają podobny, negatywny wpływ i mogą prowadzić do wzrostu temperatury silników i transformatorów, co może spowodować przegrzewanie się lub awarię.

Wpływ momentu obrotowego na ogólną wydajność i sprawność

Moment obrotowy jest ilością siły obrotowej wytworzonej przez silnik i przekazanej do napędzanego obciążenia mechanicznego. Prędkością określa się szybkość obrotu wału silnika. Moment obrotowy silnika, mierzony w funtach na stopę (lb/ft) lub niutonometrach (Nm), jest pojedynczą, najważniejszą zmienną charakteryzującą chwilową sprawność mechaniczną. Tradycyjnie moment obrotowy mierzono za pomocą czujników mechanicznych. Obecnie tester Fluke 438-II oblicza moment obrotowy za pomocą parametrów elektrycznych  w połączeniu z danymi z tabliczki znamionowej silnika. 

Wartości znamionowe parametrów silnika i przewidywane osiągi

Silniki klasyfikuje się według wartości znamionowych Nema i IEC. Klasyfikacje te zawierają kluczowe parametry elektryczne i mechaniczne, np. znamionową moc silnika, prąd przy pełnym obciążeniu, prędkość silnika i nominalną sprawność przy pełnym obciążeniu oraz opisują ogólne przewidywane osiągi silnika w normalnych warunkach pracy. Współczesne przyrządy do analizy pracy silnika korzystają z zaawansowanych algorytmów i mogą porównywać trójfazowe pomiary elektryczne z wartościami znamionowymi, co umożliwia wgląd w sprawność silnika w warunkach z faktycznym obciążeniem. Różnica między pracą silnika zgodnie ze specyfikacją producenta a jego działaniem poza określonymi parametrami ma ogromne znaczenie.

Sprawność silnika ma bezpośredni wpływ na oszczędność energii

Obecnie przemysł nieustannie stara się zredukować zużycie energii i zwiększyć sprawność silników poprzez „zielone” inicjatywy. W wielu krajach te inicjatywy stają się przepisami prawa. Jedno z ostatnich badań wykazało, że silniki zużywają 69% całej energii elektrycznej wykorzystywanej w przemyśle oraz 46% całej energii elektrycznej w kontekście globalnym. Identyfikując silniki o niskiej sprawności lub te, które uległy awarii, a następnie naprawiając lub wymieniając je, można kontrolować zużycie energii i sprawność. Analiza jakości energii elektrycznej i pracy silników zapewnia odpowiednie dane umożliwiające zidentyfikowanie i potwierdzenie nadmiernego zużycia energii oraz powodów niskiej sprawności.

Dane dotyczące jakości energii elektrycznej i pracy silnika nie są statyczne. Zmiana warunków oznacza zmianę pomiarów. Awarie silników zostały zidentyfikowane przez 75% ankietowanych w badaniu przemysłowym jako przyczyna 1–5 dni przestojów w pracy zakładu (rocznie). 90% ankietowanych stwierdziło, że awarie silników o mocy ponad 50 KM były przewidywane na mniej niż miesiąc przed awarią (36% stwierdziło, że ostrzeżenie o awarii pojawiało się na mniej niż dzień przed jej wystąpieniem). Zebranie podstawowych danych jest pierwszym krokiem na drodze do programu konserwacji prognostycznej lub zapobiegawczej. Zacznij od zbierania dokładnych odczytów podstawowych o pracy silników, a następnie podejmij kolejne kroki i śledź trendy. Aby osiągnąć najlepsze rezultaty, pomiarów powinno dokonywać się w stałych, powtarzalnych warunkach roboczych (najlepiej o tej samej porze dnia). Dzięki temu można dokonać właściwych porównań. Taką metodologię można stosować wobec danych dotyczących jakości energii elektrycznej (harmoniczne, niezrównoważenie, napięcie itp.) oraz pracy silnika (moment obrotowy, prędkość, moc mechaniczna, sprawność).

Źródło: Fluke