Celem projektu BrainScan jest stworzenie systemu wspomagającego interpretację obrazów tomografii komputerowej głowy. Bazujemy na funkcjach uczenia maszynowego. Naszym celem jest skrócenie czasu interpretacji badań tomografii komputerowej głowy i zwiększenie precyzji tej interpretacji – podkreśla Robert Kitłowski, prezes i współzałożyciel spółki BrainScan.

Sztuczna inteligencja, system komputerowy mający naśladować ludzką inteligencję, zyskuje coraz większe zainteresowanie i jest włączana do wielu dziedzin, w tym medycyny. Poprawia dokładność diagnozy i jakości opieki nad pacjentem. Jest już niemal niezbędna zwłaszcza tam, gdzie ze względu na ogromną liczbę danych i konieczność szybkiego podjęcia decyzji, człowiek bywa zawodny. Wykorzystanie uczenia maszynowego zaś sprawia, że nowa technologia sama zdiagnozuje obraz i podpowie rozwiązanie.

Rozwiązanie proponowane przez polski start-up eliminuje problem błędnych interpretacji i rosnących kolejek do medycznej interpretacji tomografii. Oprogramowanie wykorzystuje uczenie maszynowe do analizy obrazów tomografii komputerowej głowy w celu wykrywania i oceny zmian w mózgu

Bazujemy na trójwymiarowych sieciach neuronowych. To konwolucyjne sieci, jest to głębokie uczenie, najwyższy poziom technologii światowej. Bazujemy na najnowszych osiągnięciach w tej dziedzinie – przekonuje Robert Kitłowski.

System przeszukuje całe archiwum skanów w poszukiwaniu podobnych zdarzeń. W ciągu kilku sekund pobrane skany są przedstawiane lekarzowi wraz z lokalizacją zmian podobnych do danego przypadku, pokazuje też szczegóły dotyczące diagnozy, leczenia i wyników. Z danych BrainScan wynika, że obecnie na jednego pacjenta przypada ok. 70 zdjęć tomografii komputerowej. To zaś zwiększa ryzyko popełnienia pomyłki przez lekarza. Szacuje się, że ok. 9% diagnoz tomografii jest błędnych, właśnie ze względu na przeciążenie pracą, ale i niekiedy niewielkie zmiany, niewidoczne ludzkim okiem. BrainScan automatycznie oznacza dany obraz jako normalny, lub ze zmianami patologicznymi, m.in. guzem, krwawieniem, zwapnieniem, udarem niedokrwiennym. Rozpoznaje także zmiany po udarze.

Start-up niedawno otrzymał milion dolarów finansowania na badania i rozwój od Narodowego Centrum Badań i Rozwoju. Finansowanie ma umożliwić dalszy rozwój najnowocześniejszego silnika analitycznego do obrazowania 3D.

Źródło: Newseria